Amortization Worksheet

This worksheet allows you to see a complete loan Amortization Schedule of the current values entered in the TVM worksheet. The calculation allows to obtain the amount of the payment applied toward principal and toward interest from a single loan payment or from several payments at once.

Amortization Menu Actions	
[PV]	Stores the loan amount or 'Present Value' to be amortized .
$[$ / / Y]	Stores the nominal interest rate per year in \%.
$[$ PMT]	Stores periodic payment of the loan.
$[$ P1]	Stores the starting payment to be amortized .
$[$ P2]	Stores the ending payment to be amortized (recalculates \#P).
$[$ \#P]	Stores the number of periods to amortize at once (recalculates P2)
$[$ Table]]	Calculates the Previous or the Next P1 to P2 periods amortization.
$[$ Balance]	Calculates the loan "Balance" after the payments are made.
$[$ Principal]	Calculates the amount of the payment applied to "Principal".
$[$ Interest]	Calculates the amount of the payment applied to "Interest".

Example 1: Amortization Schedule

You can obtain a 30 -year, $\$ 65,000$ mortgage at 12.5% annual interest. This requires a monthly payment of $\$ 693.72$ (at the end of each month). Find the amounts that would be applied to interest and to the principal from the first and second year's payments.

Solution: Follow the next sequence:

Keystrokes	Description
[TVM]	Open the Time-Value of Money worksheet.
[END]	Set the END payment mode.
12 [P/Y]	Set the number of payments per year to 12.
12.5 [I/ Y]	Stores the nominal annual interest rate in percent.
65000 [PV]	Stores the loan amount (Present Value).
-693.72 [PMT]	Stores the periodic payment with negative sign.
[AMORT]	Shows the Amortization worksheet
1[P1]	Set the starting period to amortize.
12[P2] or [\#P]	Set the ending period to amortize.
[Balance]	Shows the remaining loan amount at the end of the 1st year: $\text { BAL }=64,788.52$
[Principal]	Shows the amount of the payments of the 1st year that was applied to principal: $\operatorname{PRIN}=\mathbf{- 2 1 1 . 4 8}$
[Interest]	Shows the amount of the payments of the 1st year that was applied to interest: $\operatorname{INT}=\mathbf{- 8 , 1 1 3 . 1 6}$
[${ }^{\text {d }}$	Advance to the next amortization: Payments 13-24
[Balance]	Shows the remaining loan amount at the end of the 2nd year: $\text { BAL }=64,549.03$
[Principal]	Shows the amount of the payments of the 2nd year that was applied to principal: PRIN $=\mathbf{- 2 3 9 . 4 9}$
[Interest]	Shows the amount of the payments of the 2nd year that was applied to interest: $\operatorname{INT}=\mathbf{- 8 , 0 8 5 . 1 5}$

Example 2: Amortization Schedule

In the previous example, you found a better alternative with an Interest rate of 10% per year. Find the new amounts that would be applied to interest and to the principal from the first and second year's payments.

Solution: Follow the next sequence:

Keystrokes	Description
10 [/ Y]	Stores the new interest rate percent.
1 [P1]	Set the starting period to amortize.
12 [P2]	Set the ending period to amortize.
[Balance]	Shows the remaining loan amount at the end of the 1st year: BAL = 63,089.34
[Principal]	Shows the amount of the payments of the 1st year that was applied to principal: PRIN =-1,910.66
[Interest]	Shows the amount of the payments of the 1st year that was applied to interest: INT = -6,413.98
[${ }^{\text {P }}$]	Advance to the next amortization: Payments 13-24
[Balance]	Shows the remaining loan amount at the end of the 2nd year: BAL = 60,978.62
[Principal]	Shows the amount of the payments of the 2nd year that was applied to principal: PRIN =-2,110.72
[Interest]	Shows the amount of the payments of the 2nd year that was applied to interest: INT = -6,213.92

To visualize the complete loan schedule from the first to the last period, touch the [Table] button. Additionally, in the table view you can touch the [Copy] button to copy the complete schedule as text, to allow you to paste it in any other application for further use (for example in a email message).

Amortization Schedule			
$\#$	Interest	Principal	Balance
$1-12$	$-6,413.98$	$-1,910.66$	$63,089.34$
$13-24$	$-6,213.92$	$-2,110.72$	$60,978.62$
$25-36$	$-5,992.92$	$-2,331.72$	$58,646.90$
$37-48$	$-5,748.76$	$-2,575.88$	$56,071.02$
$49-60$	$-5,479.01$	$-2,845.63$	$53,225.39$
$61-72$	$-5,181.04$	$-3,143.60$	$50,081.79$
$73-84$	$-4,851.88$	$-3,472.76$	$46,609.03$
$85-96$	$-4,488.22$	$-3,836.42$	$42,772.61$
$97-108$	$-4,086.50$	$-4,238.14$	$38,534.47$
$109-120$	$-3,642.71$	$-4,681.93$	$33,852.54$
$121-132$	$-3,152.45$	$-5,172.19$	$28,680.35$
$133-144$	$-2,610.87$	$-5,713.77$	$22,966.58$
$145-156$	$-2,012.54$	$-6,312.10$	$16,654.48$
$157-168$	$-1,351.61$	$-6,973.03$	$9,681.45$
$169-180$	-621.43	$-7,703.21$	$1,978.24$
$181-192$	-32.48	$-1,978.24$	0.00

