Unequal Periods Cash Flows Worksheet

List Example	$\mathrm{r} \%$ 5.00%	NPV $6,159.89$
Interest Type Compound	IRR\%	NFV
Interest Base Days: 360	PV $(-)$	TOTAL

This worksheet extends the cash flows calculations when they occurs at unequal periods. The cash flows are specified in a list with the cash flow value and the date it occurs.

$\begin{gathered} {\left[\begin{array}{c} \text { List } \\ \text { New } \\ \text { Edit } \end{array}\right.} \\ >\text { Load } \\ \text { Delete } \end{gathered}$	Unequal Periods Cash Flows action menu. Opens the "(Date, CF) List Editor" to create a new list. Opens the "(Date, CF) List Editor" to edit the current list. Shows a menu to load a previously saved list. Deletes the current list.
[r \%]	Stores or calculates the "Rate of Return" (r\%) in percent.
[NPV]	Stores or calculates the "Net Present Value" (NPV).
Interest Mode Compound or Simple	Set the interest type of r\% to Compound or Simple for all the calculations performed in the worksheet.
Interest Base Days	Stores the number of days for interest " r \%" definition to calculate the daily interest to apply (r\%/Days).
[IRR\%]	Calculates the Internal Rate of Return of the current list in \%.
[NFV]	Calculates the Net Future Value of the current list.
[TOTAL]	Calculates the total sum of the current list.
[PV(-)]	Calculates the Present Value of Negative cash flows at the displayed number rate in \%.
[FV(+)]	Calculates the Future Value of Positive cash flows at the displayed number rate in \%.
[MIRR]	Calculates the Modified Internal Rate of Return. The investment rate is $r \%$ and the risk free rate\% is the displayed number.
If any other key is pressed before one of the Blue keys, the displayed number is stored in the corresponding variable. Otherwise, the variable is calculated.	

To create or edit an unequal period cash flow list, see the "(Date, CF) List Editor" help document.

Example:

Considering an investment opportunity with the following estimated cash flows schedule:

Date	Cash Flow	Date	CashFlow
Dec 20, 2023	$-\mathbf{1 8 0 . 0 0 0}$	Apr 16, 2026	45.000
Apr 18,2024	25.000	Apr 14, 2027	50.000
Feb 13, 2025	33.000	Jul 16, 2028	60.000

If you demand a compounding nominal interest rate base on 360 days, calculate:
1.- Net Present value at 5% interest.
2.- The rate necessary to obtain a Net Present value of 1000.
3.- The Internal rate of return (IRR\%).
4.- Calculate the Net Future Value at 5% of interest.
5.- Calculate the Modified Rate of Return with 2.5% safe rate and 5% risk rate.

Solution:

Keys	Comment
[$=$ List $>$] ${ }^{\text {b }}$ New	Opens the "(Date, CF) List Editor".
[Add] Set the Transaction Date Type 180000 [+ / -] [Enter]	Adds transaction to the list. Set Year-Month and Day to "Dec 20, 2023". Enter "-180000" cash flow value to the list.
[Add] Set the Transaction Date Type 25000 [Enter]	Adds transaction to the list. Set Year-Month and Day to "Apr 18, 2024". Enter "25000" cash flow value to the list.
[Add] Set the Transaction Date Type 33000 [Enter]	Adds transaction to the list. Set Year-Month and Day to "Feb 13, 2025". Enter " 33000 " cash flow value to the list.
[Add] Set the Transaction Date Type 45000 [Enter]	Adds transaction to the list. Set Year-Month and Day to "Apr 16, 2026". Enter "45000" cash flow value to the list.

Keys	Comment
[Add] Set the Transaction Date Type 50000 [Enter]	Adds transaction to the list. Set Year-Month and Day to "Apr 14, 2027". Enter "5000"" cash flow value to the list.
[Add] Set the Transaction Date Type 60000 [Enter]	Adds transaction to the list. Set Year-Month and Day to "Jul 16, 2028". Enter "60000" cash flow value to the list.
List] Name...	Shows a Name entry view to name the list
Type "Example" [Done]	Name the list "Example"
[Save]	Save the "Example" list and close the editor

Once finished, you are back in the Unequal Periods Cash Flows menu and ready to perform the required calculations:

Keys	Comment
$\begin{gathered} {[==\text { List }>]} \\ >\text { Load } \quad \text { Example } \end{gathered}$	If the "Example" list is not already shown in the " $==$ List -" button, select "Example" from the Load submenu.
Interest Mode Compound	Set the interest to compound.
360 [Days]	Set the interest base number of days.
5 [r\%] [NPV]	1) Input the nominal interest rate and calculate NPV. Result -> NPV = 6,159.89
1000 [NPV] [r\%]	2) Input the desire NPV and calculate the nominal interest rate. Result $->\mathrm{r} \%=\mathbf{6 . 1 0}$
[IRR\%]	3) Calculate the Internal Rate of Return. Result $->$ IRR\% = 6.32
5 [r\%] [NFV]	4) Calculate the Net Future Value at 5% rate. Result -> NFV = 7,724.45
2.5 [MIRR]	5) Type the risk free rate of 2.5% and calculate the Modified Rate of Return $->$ MIRR\% = 5.76

Repeats the calculation but, change the Interest Mode to Simple interest.

Keys	Comment
Interest Mode Simple	Set the interest to compound.
$5[\mathrm{r} \% \mathrm{]}[\mathrm{NPV}]$	1) Input the interest rate and calculate NPV. Result $->$ NPV $=7,530.21$
$1000[\mathrm{NPV}][\mathrm{r} \%]$	2) Input the desire NPV and calculate the interest rate. Result $->$ r\% $=6.57$
$[\mathrm{IRR} \mathrm{\%}]$	Calculate the Internal Rate of Return. Result $->$ IRR\% $=6.83$
$5[\mathrm{r} \%][\mathrm{NFV}]$	Calculate the Net Future Value at 5% rate. Result $->$ NFV $=10,681.53$
$2.5[\mathrm{MIRR}]$	5) Type the risk free rate of 2.5\% and calculate the Mod- ified Rate of Return $->$ MIRR $=6.28 \%$

