Probability Worksheet

This worksheet allows the calculations of combinations, permutations, random numbers, factorial and probabilities of selected distributions.

Probability Menu Actions

[n]	Stores the number of total items.
[r$]$	Stores the number of items to be taken at a time.
[nCr]	Calculates the number of combinations. $\mathrm{nCr}=\mathrm{n}!/[\mathrm{r}!\cdot(\mathrm{n}-\mathrm{r})$!]
[nPr]	Calculates the number of permutations. $\mathrm{nPr}=\mathrm{n}!/(\mathrm{n}-\mathrm{r})$!
[RAN\#]	Enters a random number in the range $0 \leq \boldsymbol{x}<1$
N!	Calculates the factorial of the displayed number.
[Select ${ }^{\text {P }}$ Exponential Normal t -Student Weibull	Select one of the available Probability Distribution.
[$p(x)$]	Calculates the probability density of the displayed number.
[$p(x)^{-1}$]	Calculates the inverse probability density of the displayed number.
[P(x)]	Calculates the lower-tail cumulative probability of the displayed number.
[P(x) ${ }^{-1}$]	Calculates the inverse lower-tail cumulative probability of the displayed number.

Example: Combinations

Using 10 colored balls, how many different color combinations of three balls can be chosen?

Keystrokes	Description
$10[\mathbf{n}]$	Type the number of total items (10 colored balls).
$3[r]$	Type the size os the sample (3 balls)
$[\mathrm{nCr}]$	Calculate the number of possible combinations. Result $=\mathbf{1 2 0 . 0 0}$

Example: Permutations

Using 5 books labeled A, B, C, D and E, how many different ways can three books be placed on a shelf?

Keystrokes	Description
$5[\mathbf{n}]$	Type the number of total items (5 books).
$3[\mathbf{r}]$	Type the size os the sample (3 books).
$[\mathrm{nPr}]$	Calculate the number of possible permutations. Result $=\mathbf{6 0 . 0 0}$

Example: Random Number Generator
 Store a seed value of 42 and generate a sequence of 5 random numbers.

Keystrokes	Description
42 [STO] [RAN\#]	Store the initial random seed.
$[R A N \#]$	Generate the 1st random number. Result $=\mathbf{0 . 1 7 0 8}$
$[R A N \#]$	Generate the 2nd random number. Result $=\mathbf{0 . 7 4 9 9}$
$[R A N \#]$	Generate the 3rd random number. Result $=\mathbf{0 . 0 9 6 4}$
$[R A N \#]$	Generate the 4th random number. Result $=\mathbf{0 . 8 7 0 5}$
$[R A N \#]$	Generate the 4th random number. Result $=\mathbf{0 . 5 7 7 3}$

The following examples assumes the "Probability" menu is already visible in the calculator and the display format is set to 6 decimal places.

Exponential Probability Distribution

When the Exponential probability density function is selected, the distribution "rate parameter" (λ) can be entered in the corresponding button.

The Probability Density Function is: $\mathbf{p}(\mathbf{x})=\lambda e^{-\lambda x}$

Example: Exponential Distribution

Consider an Exponential random variable with a rate of 10.

1. What is the probability for a value equal to $0.2 \Rightarrow p(0.2)=$?
2. If the probability is 5%, what is the value $\quad \Rightarrow p^{-1}(0.05)=$?
3. What is the probability of a value $\leq 0.2 \quad \Rightarrow P(x \leq 0.2)=$?
4. What is the value ' z ' for probability of $x \leq z$ is $5 \% \Rightarrow P^{-1}(x \leq z)=0.05$?

Solution:

Keystrokes	Description
Distribution $[$ Exponential $>]$	Select the Exponential Probability Distribution
$10[\boldsymbol{\lambda}]$	Type the distribution rate and enter it.
$0.2[p(x)]$	1) Calculate the probability. Result $=\mathbf{1 . 3 5 3 3 5 3}$
$0.05\left[p(x)^{-1}\right]$	2) Calculate the z-value. Result $=\mathbf{0 . 5 2 9 8 3 2}$
$0.2[P(x)]$	3) Calculate the probability. Result $=\mathbf{0 . 8 6 4 6 6 5}$
$0.05\left[P(x)^{-1}\right]$	4) Calculate the z-value. Result $=\mathbf{0 . 0 0 5 1 2 9}$

Normal Probability Distribution

n: 10	r: 3	nCr	nPr	RAN\#	N!
Probability Distribution					
Norm		M: 7.35		σ \% 2.33	
Probability Density			-ower-Tail Probability		
$\mathrm{p}(\mathrm{x})$	p (X				

When the Normal probability density function is selected, the distribution "mean" (μ) and standard deviation (σ) can be entered in the corresponding buttons.

The Probability Density Function is: $\mathbf{p}(\mathbf{x})=$

Example: Normal Distribution

Consider a Normal random variable with a mean of 7.35 and a standard deviation of 2.33.

1. What is the probability for a value equal to $5.35 \Rightarrow p(5.35)=$?
2. IF the probability is 5%, what is the value $\quad \Rightarrow p^{-1}(0.05)=$?
3. What is the probability of a value $\leq 5.35 \quad \Rightarrow P(x \leq 5.35)=$?
4. What is the value ' z ' for probability of $x \leq z$ is $5 \%=>P^{-1}(x \leq z)=0.05$?

Solution:

Keystrokes	Description
Distribution $[$ Normal $]$	Select the Normal Probability Distribution
$7.35[\mu], 2.33[\sigma]$	Input the distribution mean and standard deviation.
$5.35[p(x)]$	1) Calculate the probability. Result $=\mathbf{0 . 1 1 8 4 5 7}$
$0.05\left[p(x)^{-1}\right]$	2) Calculate the z-value. Result $=\mathbf{1 1 . 0 0 5 8 3 7}$
$5.35[P(x)]$	3) Calculate the probability. Result $=\mathbf{0 . 1 9 5 3 4 4}$
$0.05\left[P(x)^{-1}\right]$	4) Calculate the z-value. Result $=\mathbf{3 . 5 1 7 4 9 1}$

Weibull Probability Distribution

n : 10	r: 3	nCr	nPr	RAN\#	N!
Probability Distribution					
Weib		k: 20.0		$\lambda: 100.0$	
Probability Density					
$\mathrm{p}(\mathrm{x})$	p(x	$\mathrm{P}(\mathrm{x})$		$P(x)^{-1}$	

When the Weibull probability density function is selected, the distribution "shape" parameter (k) and the "scale" parameter (λ) can be entered in the corresponding buttons.
The Probability Density Function is: $\mathrm{p}(\mathrm{x})=\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x / \lambda)^{k}}$

Example: Weibull Distribution

Consider a Weibull random variable with a shape factor of 20 and a scale factor of 100 .

1. What is the probability for a value equal to $105 \Rightarrow p(105)=$?
2. If the probability is 5%, what is the value $\quad \Rightarrow p^{-1}(0.05)=$?
3. What is the probability of a value $\leq 90 \quad \Rightarrow P(x \leq 90)=$?
4. What is the value ' z ' for probability of $x \leq z$ is $5 \%=>P^{-1}(x \leq z)=0.05$?

Solution:

Keystrokes	Description
Distribution $[$ Weibull $]$	Select the Weibull Probability Distribution
$20[k], 100[\lambda]$	Input the shape (k) and scale (λ) parameters of the distribution.
$105[p(x)]$	1) Calculate the probability. Result $=0.035589$
$0.05\left[p(x)^{-1}\right]$	2) Calculate the z-value. Result $=94.584178$
$90[P(x)]$	3) Calculate the probability. Result $=\mathbf{0 . 1 1 4 4 7 7}$
$0.05\left[P(x)^{-1}\right]$	4) Calculate the z-value. Result $=86.199159$

t-Student Probability Distribution

When the t-Student probability density function is selected, the distribution "Degrees of Freedom" parameter (DF) can be entered in the corresponding button.
The Probability Density Function is: $\mathbf{p}(\mathbf{x})=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}$

Example: Weibull Distribution

Consider a t-Student random variable with 8 degrees of freedom.

1. What is the probability for a value equal to $0.5 \Rightarrow p(0.5)=$?
2. If the probability is 5%, what is the value $\quad \Rightarrow p^{-1}(0.05)=$?
3. What is the probability of a value $\leq 0.5 \quad \Rightarrow P(x \leq 0.5)=$?
4. What is the value ' z ' for probability of $x \leq z$ is $5 \%=>P^{-1}(x \leq z)=0.05$?

Solution:

Keystrokes	Description
$\left.\begin{array}{c}\text { Distribution } \\ {[t-S t u d e n t}\end{array}\right]$	Select the t-Student Probability Distribution
$8[D F]$	Input the distribution degrees of freedom.
$0.5[p(x)]$	1) Calculate the probability. Result $=\mathbf{0 . 3 3 6 6 9 4}$
$0.05\left[p(x)^{-1}\right]$	2) Calculate the z-value. Result $=\mathbf{2 . 1 4 5 7 2 4}$
$0.5[P(x)]$	3) Calculate the probability. Result $=\mathbf{0 . 6 8 4 7 3 2}$
$0.05\left[P(x)^{-1}\right]$	4) Calculate the z-value. Result $=\mathbf{- 1 . 8 5 9 5 4 8}$

