## (X,Y) List Statistics Worksheet



This worksheet perform basic statistical calculations over a previously created list, which is in the form of : " $X$ " value and " $Y$ " value ( a " $\mathbf{X}, \mathrm{Y}$ ) List").

|  | Statistics action menu. <br> Shows the "(X,Y) List Editor" to create a new list. Shows the Editor to edit the current selected list. Shows a menu to load an existing " $(X, Y)$ List". Deletes the current " $(\mathrm{X}, \mathrm{Y})$ List". |
| :---: | :---: |
| [ Curve Fitting ] | Opens the "(X,Y) List Curve Fitting" worksheet. |
| [ n ] | Shows the number of samples of the current list. |
| [ $\mathrm{x} \times$ ] | Calculates the sum of the " X " values. |
| [ $\Sigma \mathrm{y}$ ] | Calculates the sum of the "Y" values. |
| [ $\Sigma \mathrm{x}^{2}$ ] | Calculates the sum of the squares of the " $X$ " values. |
| [ $\Sigma \mathrm{y}^{2}$ ] | Calculates the sum of the squares of the " $Y$ " values. |
| [ $\Sigma \mathrm{x} \cdot \mathrm{y}$ ] | Calculates the sum of the product of the " $X$ " and " $Y$ " values. |
| [ Weighted Mean ] | Calculates the weighted mean of " $X$ " values with " $Y$ " weights. |
| [ Corr. $\mathrm{R}^{2}$ ] | Calculates the linear regression correlation coefficient. |
| [ Min. ] | Calculates the minimum of " $X$ " or " $Y$ " values. |
| [ Max.] | Calculates the maximum of " $X$ " or " $Y$ " values. |
| [ Mean ] | Calculates the average of " $X$ " or " $Y$ " values. |
| [ s ] | Calculates the standard deviation of " $X$ " or " $Y$ " values. |
| [ 0 ] | Calculates the Population standard deviation of " $X$ " or " $Y$ " values. |
| [ Median ] | Calculates the median of " $X$ " or " $Y$ " values. |

## Example:

For the last six weeks the following data was collected: minutes of advertising purchased in local radio and the corresponding total sales:

| Week | Minutes | Sales |
| :---: | :---: | :---: |
| 1 | 2 | $1.400,00$ |
| 2 | 1 | 920,00 |
| 3 | 3 | $1.100,00$ |
| 4 | 5 | $2.265,00$ |
| 5 | 6 | $2.890,00$ |
| 6 | 4 | $2.200,00$ |

Create the list and calculate all the statistical values including in this worksheet.

## Solution:

The first step is to create the data list:

| Keystrokes | Comment |
| :---: | :---: |
|  | Show the "(X,Y) List Editor" to create a new List. |
| [ Add] <br> Type 2 in " $X$ " value [ Enter ] 1400 in " $Y$ " value [ Enter ] | Enters the $\mathrm{X}_{1}, \mathrm{Y}_{1}$ values. |
| $\begin{aligned} & \text { [ Add ] } \\ & \text { Type } 1 \text { in " } X \text { " value [ Enter ] } \\ & 920 \text { in " } Y \text { " value [ Enter ] } \end{aligned}$ | Enters the $\mathrm{X}_{2}, \mathrm{Y}_{2}$ values. |
| [ Add] <br> Type 3 in "X" value [ Enter ] 1100 in " $Y$ " value [ Enter ] | Enters the $\mathrm{X}_{3}, \mathrm{Y}_{3}$ values. |
| [ Add] <br> Type 5 in " $X$ " value [ Enter ] 2265 in " $Y$ " value [ Enter ] | Enters the $\mathrm{X}_{4}, \mathrm{Y}_{4}$ values. |
| [ Add] <br> Type 6 in " $X$ " value [ Enter ] 2890 in " $Y$ " value [ Enter ] | Enters the $\mathrm{X}_{5}, \mathrm{Y}_{5}$ values. |
| [ Add] <br> Type 4 in "X" value [ Enter ] 2200 in " $Y$ " value [ Enter ] | Enters the $\mathrm{X}_{6}, \mathrm{Y}_{6}$ value. |


| Keystrokes | Comment |
| :---: | :--- |
| [ List $>$ Name... | Shows a Name entry form to name the list. |
| Type "Minutes-Sales" and <br> [Done ] | Name the list "Minutes-Sales" |
| [Save ] | Save the list and close the editor view. |

Now that the samples list was created you can proceed to calculate the statistical values:

| Keystrokes | Comment |
| :---: | :---: |
| [ Mean ] X values [ Mean ] Y values | Mean of " $X$ " values: X -mean $\mathbf{= 3 . 5 0}$ <br> Mean of " $Y$ " values: $Y$-mean $=\mathbf{1 , 7 9 5 . 8 3}$ |
| [s] $X$ values <br> [s] Y values | Standard deviation of " $X$ " values. $S x=1.87$ <br> Standard deviation of " $Y$ " values. $\mathbf{S y = 7 7 3 . 1 3}$ |
| [ $\sigma$ ] X values <br> [ $\sigma$ ] Y values | Population standard deviation of " $X$ " values. $\boldsymbol{\sigma x}=1.71$ <br> Population standard deviation of " Y " values. $\boldsymbol{\sigma} \mathbf{y}=\mathbf{7 0 5 . 7 6}$ |
| [ Median ] $X$ values <br> [ Median ] Y values | Median of the " $X$ " values. $\mathbf{X}$-median $=\mathbf{3 . 5 0}$ <br> Median of the " $Y$ " values. $Y$-median $=\mathbf{1 , 8 0 0 . 0 0}$ |
| [ n ] | Number of samples. $\mathbf{n}=\mathbf{6 . 0 0}$ |
| $\begin{aligned} & {[\Sigma x]} \\ & {[\Sigma y]} \end{aligned}$ | Sum of " $X$ " values. $\mathbf{\Sigma x}=\mathbf{2 1 . 0 0}$ <br> Sum of " $Y$ " values. $\Sigma \boldsymbol{y}=\mathbf{1 0 , 7 7 5 . 0 0}$ |
| $\begin{gathered} {\left[\Sigma x^{2}\right]} \\ {\left[\Sigma y^{2}\right]} \end{gathered}$ | Sum of squares of $X$ values. $\Sigma x^{2}=91.00$ <br> Sum of squares of $Y$ values. $\Sigma \mathbf{y}^{\mathbf{2}}=\mathbf{2 2 , 3 3 8 , 7 2 5 . 0 0}$ |
| [ $\Sigma \mathrm{x} \cdot \mathrm{y}$ ] | Sum of the product of " $X$ " and " $Y$ " values. $\Sigma \mathrm{X} \cdot \mathrm{y}=44,485.00$ |
| [ W.m] | Weighted Mean. W.m = 4.13 |
| [ $\mathrm{R}^{2}$ ] | Correlation coefficient. $\mathbf{R}^{\mathbf{2}}=0.94$ |

With the above list:

1. What regression model best fits the data ?
2. With best model, what is the estimated Sales for 8 minutes advertising?
3. How many Minutes are estimated to obtain $\$ 3,000$ sales?

## Solution:

Touch the [ Curve Fitting] button to show the "(X,Y) List Curve Fitting" worksheet.


The menu opens with the default "Linear" regression model calculated with the current X,Y-List ("Minutes-Sales")

Now we can answer the questions:

| Keystrokes | Comment |
| :---: | :--- |
| [ Model P ] Best Fit | 1) Compares the fitting correlation coefficient $\left(\mathrm{R}^{2}\right)$ for all the <br> available models and pick the best one (closer to 1). <br> Result: "Linear" model with the equation $\mathrm{Y}=\mathrm{M} \cdot \mathrm{X}+\mathrm{B}$ |
| $8[\mathrm{X}][\mathrm{Y}]$ | 2) Enter the 8 minutes advertising and calculates the esti- <br> mated sales. Result $-\mathbf{Y}=\mathbf{Y , 5 3 7 . 3 3}$ |
| $3000[\mathrm{Y}][\mathrm{X}]$ | 3) Enters the $\$ 3,000$ required sales and calculates the esti- <br> mated minutes of advertising. Result-> $\mathbf{X}=\mathbf{6 . 6 1}$ |

