Two (X,N) Lists Curve Fitting Worksheet

This menu allows you to perform curve-fitting regressions with two previously created lists, which must be in the form of : sample value and its frequency (a "(X,N) List").

[$=$ X-List ${ }^{\text {d }}$]	Select a previously created (X, N) List for the ' X ' variable.
[$\quad=$ Y-List $>$]	Select a previously created (X, N) List for the ' Y ' variable.
[Model $>$]	Select the regression model to use (Linear, Logarithmic, Exponential, Power, Exponent or Inverse) or find the model that best fit the data.
[M]	Calculates the 'M' coefficient for the selected regression model.
[B]	Calculates the 'B' coefficient for the selected regression model.
[R^{2}]	Calculates correlation coefficient for the selected regression model.
[X]	Stores the ' X ' value or calculates it for a given ' Y ' value using the current regression model.
[Y]	Stores the ' Y ' value or calculates it for a given ' X ' value using the current regression model.

If any other key is pressed before one of the Blue keys, the displayed number is stored in the corresponding variable. Otherwise, the variable is calculated.

Example:

Using the "Minutes" and "Sales" lists created in the menu document "Two (X,N) Lists Statistics", calculate:

1) What regression model best fits the data?.
2) What is the best estimated sales for a 8 minutes of advertising?.
3) What is the best estimate of minutes to obtain $\$ 3,000.0$ sales?

Solution:

$\left[\begin{array}{c} {[=\text { X-List }>]} \\ \text { "Minutes" } \end{array}\right.$	Select the "Minutes" list for ' X ' variable.
$\begin{gathered} {[=\text { Y-List }>]} \\ \text { "Sales" } \end{gathered}$	Select the "Sales" list for 'Y' variable.
[Model ${ }^{\text {] }}$] LIN [R ${ }^{2}$]	Select the "Linear" model $=>\mathbf{R}^{\mathbf{2}}=0.94$
[Model - ${ }^{\text {c }}$ LOG [R^{2}]	Select the "Logarithm" model $=>\mathbf{R}^{\mathbf{2}} \mathbf{= 0 . 8 7}$
[Model ${ }^{\text {d }}$] EXP [R^{2}]	Select the "Exponential" model $=>\mathbf{R}^{\mathbf{2}} \mathbf{= 0 . 9 3}$
[Model ${ }^{\text {l }}$] POW [R ${ }^{2}$]	Select the "Power" model $=>\mathbf{R}^{\mathbf{2}} \mathbf{= 0 . 8 9}$
[Model ${ }^{\text {d }}$] EXX [R ${ }^{2}$]	Select the "Exponent" model $=>\mathbf{R}^{\mathbf{2}} \mathbf{= 0 . 9 3}$
[Model -] INV [R ${ }^{\text {² }}$]	Select the "Inverse" model $=>\mathbf{R}^{\mathbf{2}} \mathbf{= 0 . 7 7}$
[Model ${ }^{\text {P }}$] Best Fit	1) The best model is the Linear because it has the higher \mathbf{R}^{2}. (Sales = 387.00 * Minutes + 441.33) Alternatively, you can answer this question in a more direct way selecting the "Best Fit" option of the [Model $>$] button.
$8[\mathrm{X}][\mathrm{Y}]$	2) For 8 minutes of advertising, the estimated sales $=3,537.33$
3000 [Y] [X]	3) For 3,000 of sales you should contract 6.61 minutes.

